
Four Correlates of Complex Behavioral
Networks: Differentiation, Behavior,

Connectivity, and Compartmentalization
Carving Networks at Their Joints

MARK A. CHANGIZI AND DARREN HE

Received July 31, 2003; revised February 11, 2004 and March 13, 2005; accepted March 13, 2005

Some of the most complex networks are those that (i) have been engineered under selective pressure (either economic
or evolutionary), and (ii) are capable of eliciting network-level behaviors. Some examples are nervous systems, ant
colonies, electronic circuits and computer software. Here we provide evidence that many such selected, behavioral
networks are similar in at least four respects. (1) Differentiation: Nodes of different types are used in a combinatorial
fashion to build network structures through local connections, and networks accommodate more structure types via
increasing the number of node types in the network (i.e., increasing differentiation), not via increasing the length of
structures. (2) Behavior: Structures are themselves combined globally to implement behaviors, and networks
accommodate a greater behavioral repertoire via increasing the number of lower-level behavior types (including
structures), not via increasing the length of behaviors. (3) Connectivity: In order for structures in behavioral networks
to combine with other structures within a fixed behavior length, the network must maintain an invariant network
diameter, and this is accomplished via increasing network connectivity in larger networks. (4) Compartmentaliza-
tion: Finally, for reasons of economical wiring, behavioral networks become increasingly parcellated. Special
attention is given to nervous systems and computer software, but data from a variety of other behavioral selected
networks are also provided, including ant colonies, electronic circuits, web sites and businesses. A general framework
is introduced illuminating why behavioral selected networks share these four correlates. Because the four above
features appear to apply to computer software as well as to biological networks, computer software provides a useful
framework for comprehending the large-scale function and organization of biological networks. © 2005 Wiley
Periodicals, Inc. Complexity 10: 13–40, 2005
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INTRODUCTION

T oday we know what biological networks are made of,

but it is fair to say that we have little idea how they

work. For example, we know the one thousand cells of
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the round worm Caenorhabditis elegans in and out, but we

are in the dark when it comes to how they work together as

a network whole. One reason biological networks are so

perplexing is that they do not wear their organizational

structure on their sleeves. In fact, they have a tendency to

look like chunks of meat (e.g., brains), alphabet soup (e.g.,

protein networks), or mobs of scurrying individuals (e.g.,

ant colonies). This is in stark contrast to another kind of

network, computer software code, where operators are the

nodes, and program flow defines the edges. By “computer

software,” we refer to software actually found in “nature”,

i.e., actually engineered by people, as opposed to “any old”

program in Platonic heaven. For any computable function

there are infinitely many programs, or networks, that com-

pute that function, but only an infinitesimal fraction of

these programs will be economically organized. It is this

class of economically organized programs that is the do-

main of computer software. Unlike the enigmatic biological

networks, computer software does tend to wear its organi-

zational structure on its sleeve—as seen, for example, in

Figure 1(a)—and is, accordingly, much easier to compre-

hend. Consider, however, how mysterious computer soft-

ware would become if the code were scrambled up, but with

its program flow, or edges, unaffected, as seen in Figure

1(b). This is more akin to the way biological networks

present themselves to us. Just as it is crucial for understand-

FIGURE 1

Software code can be treated as a network, where the operators are the nodes, and program flow defines the edges. (This is commonly done in software
engineering.) (a) Software code presented in the usual fashion, where the instructions, or lines of code, are readily apparent (as is the program flow). (b)
The same software code, but where the operators have been scrambled (and the edges are presumed to still exist as before, so that the program still works).
This is analogous to how biological networks appear to us, and one task of 21st century science is to parse the “scrambled network” into a translated,
organized version where the basic functional structures (analogous to lines of code) are apparent.
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ing computer software to have the code “carved at its
joints,” as in Figure 1(a), it will be crucial for understanding
biological networks to carve the networks at their joints.

In this article we put forth a general theoretical frame-
work for the organization of complex networks, with the
idea that it will eventually aid in the parsing (or “carving at
the joints”) of these networks. The article is structured into
four sections, each concerning one of four distinct features
that appears to be shared among many complex, biological
networks: (1) differentiation, (2) behavior, (3) connectivity,
and (4) parcellation. Section 1 concerns differentiation and
considers how network structures—the lowest-level behav-
iors—are put together from nodes. In Section 2 we look at
how network-level behaviors are built out of combinations
of lower-level behaviors in the network. We will see in
Section 3 the manner in which connectivity and network
diameter change in larger networks. Finally, in Section 4 we
will see that, for reasons of economical well-connectedness,
larger networks are expected to have a greater degree of
compartmentalization. In Section 5 we summarize the rela-
tionships between these four “correlates of complex net-
works” and show how the drive for greater behavioral rep-
ertoire size leads to all the correlates.

Our framework is intended to apply to networks that
(i) have been engineered (or “designed”) under economic
or evolutionary selective pressure (selected) and (ii) are
capable of eliciting network-level behaviors (behavioral).
Such “selected, behavioral networks” cover nervous sys-
tems, ant colonies, organisms (networks of cells), busi-
nesses (networks of employees), electronic circuits, web
sites, and computer software, all of which we will cover.
The framework does not apply to nonselected networks
(like ecosystems or economies, where selection primarily
acts at the level of the nodes) or nonbehavioral networks
(like traditional Legos, or furniture). We give special at-
tention to nervous systems, and to the mammalian neo-
cortex in particular, and will demonstrate its similarity to
many other selected, behavioral networks, including
computer software. Not only does computer software
have the same “correlates” as the biological networks, but
we will argue that computer software actually provides a
powerful model for the largest-scale function and organi-
zation of complex networks. This potentially has great
significance for understanding the organization of biolog-
ical networks, because we know how to think about com-
puter software.

1. BUILDING STRUCTURES FROM NODES
Networks are composed of nodes (and edges), and nodes

combine locally to build structures (Figure 2), which are the
parts of networks responsible for the lowest-level, or prim-
itive, behaviors. “Structures” are meant to refer to the larg-
est objects nodes locally combine to make, and structures,
in turn, behaviorally combine globally with other structures

to instantiate higher-level behaviors, as we will discuss in
Section 2. For example, neurons in the neocortex locally
combine to make anatomical formations such as minicol-
umns, as well as modules (such as barrels or blobs), and
these interact globally (via long-range white matter connec-
tions) with other such structures to instantiate neocortical
behaviors (e.g., thoughts, representations, motor com-
mands, etc.). In electronic circuits, electronic components
combine to make simple functional circuits like an integra-
tor [1], and these interact more globally to carry out circuit
“behaviors,” or device functions. And in computer software,
operators combine to make instructions, or lines of code,
and these globally interact to build software behaviors, or
runs. Table 1 gives examples for nodes and (possible) struc-
tures in a number of kinds of network, including organisms,
social insects, businesses, and in nonselected or nonbehav-
ioral networks such as ecosystems and Legos.

The question we ask in this section is this. In what
manner are nodes employed to accommodate a greater
number of structure types? There are broadly two different
possible ways (Figure 3). Under the universal language ap-
proach, the set of node types is kept invariant, or universal,
and the length of structures (i.e., the number of nodes in a
structure) is increased (logarithmically with the number of
structures, see Box 1). If this approach were followed, we
would expect differentiation not to increase as a function of
network size (see Box 2). Under the invariant-length ap-
proach, however, structure length is kept invariant, and the
number of node types is increased (as a power law with the
number of structures, see Box 1). If this approach were

FIGURE 2

Structures (primitive behaviors) in networks are built out of local
combinations of nodes. Left: The rectangular box shows a network,
inside of which are four distinct structures. The nodes and edges are
not shown. Right: Structures are actually built out of nodes. Here,
each structure is built from two nodes, where there are two node
types in the network (■ and F). The lines on the right indicate that
the nodes work together as a structure; the lines are not the edges in
the network, which are not shown. The illustration here treats the
structures as nonoverlapping, but they could overlap; all that is
required in the framework is that any “degree of overlap” does not
itself tend to vary as a function of network size.

© 2005 Wiley Periodicals, Inc. C O M P L E X I T Y 15



followed, we would expect differentiation to increase as a
function of network size (as a power law with positive ex-
ponent less than one, see Box 2).

In which of these manners does structural repertoire size
increase in selected, behavioral networks? Figure 4 shows
data for how differentiation scales with network size for a
number of kinds of network, including two kinds of nervous
network (neocortex and retina). In each case, differentiation
increases with network size consistent with a power law,
and thus the invariant-length approach is implicated, and
the universal language approach can be rejected. This is
true even for electronic circuits and computer software
where universal languages are known; it is not, then, the
case that the scarcity of the universal language approach is
due to the difficulty in obtaining universal languages.

Another way to distinguish between the universal-lan-
guage and invariant-length approaches to the construction
of structures from nodes is to actually measure the lengths
of structures in networks of varying size, and see if their
length remains invariant. The difficulty with this, however,
is that it is not always easy to know what the structures (or
primitive behavior-producing parts) are in a network. Plot-
ting differentiation versus network size as in Figure 4 al-
lowed us to test whether there are invariant-length struc-
tures indirectly, and we were able to remain ignorant about
what exactly the structures are. In neocortex, one of the
most plausible notions of what a structure might be (i.e.,
what a local group of neurons combine to make, such that
that group acts as a lowest-level behavior in the global
construction of higher-level behaviors) is the minicolumn,

which is a group of on
the order of 100 neurons
spanning the thickness
of the neocortex [2–6].
Minicolumns are, in fact,
invariant in length [7], or,
equivalently, it is known
that gray matter thick-
ness increases in larger
brains at the same rate as
that expected by the
overall neuron density
decrease [8–17]. Another
neocortical candidate for
a structure is the mod-
ule, which refers to col-
umns (not minicol-
umns), blobs, barrels,
and stripes. Figure 5(a)
shows that the number
of neurons in a module
does not vary as a
function of brain size

[16]. In computer soft-

ware, structures are

most plausibly instructions, which typically lie on a single

line of code. Figure 5(b) presents data showing that the

number of operators per line of code is invariant.

The fact that computer software possesses invariant-

length lines of code may not be empirically surprising to

many readers, for most of us have seen many programs of

varying sizes, and lines of code seem to be roughly the same

length independent of program size. That these other di-

verse networks have invariant-length structures (as power-

law scaling of differentiation indicates), however, is not at

all empirically obvious. Not only do power-law plots of

differentiation versus network size tell us that structures are

invariant in length, they tell us roughly how large the struc-

tures are, for the inverse of the slope measures the average

length of the structures. Actually, it measures the number of

degrees of freedom, or combinatorial degree, of structures

(see Boxes 1 and 2). The combinatorial degree is a number

greater than or equal to 1, where 1 would imply that nodes

are not used combinatorially at all, and greater values mean

that nodes are used more combinatorially. For example, if

the number of node types scales as the 1/2 power of net-

work size, then that suggests a combinatorial degree of

1/(1/2) � 2, or two degrees of freedom per structure. For

computer software in Figure 4, the inverse of the slope is a

little over two, which means there are a little over two

degrees of freedom (intuitively, a length of a little over two)

in the construction of instructions (or lines of code). See Ref.

1 for discussion of the combinatorial degrees for many of

TABLE 1

Some Example Hierarchical Relationships between Nodes and Structures

Nodes Structures (Lowest-Level Behaviors)

Behavioral, selected
Nervous systems Neurons Basic circuit (minicolumns?)
Organisms Cells Basic cell combinations (organs?)
Social insects Insects Basic insect combinations (e.g., bridge?)
Businesses Employees Basic employee groups (committee?)
Electronic circuits Components Basic circuits (e.g., integrator?)
Computer software Operators Instructions (e.g., lines of code?)

Nonbehavioral, selected
Legos Lego pieces Connections

Nonselected (nonbehavioral?)
Ecosystems Organism Food chains

The first group of networks in the table are behavioral selected networks. Some nonbehavioral networks also may have
structures, although they are not themselves used as symbols in higher-level behaviors. For example, Legos are
nonbehavioral selected networks, and connections between pieces (i.e., pairs of pieces) may be the fundamental
structure. (By “Legos” we refer to traditional Legos, not to the newer varieties that are computer-controlled and do have
behaviors.) Some nonselected networks also may have structures, such as ecosystems (which are arguably nonbehav-
ioral), where organisms interact combinatorially and make food chains (see Ref. 1).
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these networks; in Figure 4 the combinatorial degree, d,
values are indicated for each of the plots.

In addition to leading to conclusions about invariant-
length structures, another main, and connected, generali-
zation we may make is that, because of the invariant-length
structures, behavioral selected networks become increas-
ingly differentiated as they enlarge. Others have studied the
increase of differentiation in behavioral networks such as
organisms [18 –29], social insects [1, 30 –32], businesses [1,
33– 41], computer software [42– 48], electronic circuits [1], as
well on hierarchy more generally [49 –52]. We see here in

Figure 4 that increasing differentiation in larger networks
appears to be common (possibly universal?) among selected
behavioral networks, and more specifically, differentiation
appears to increase as a power law. There also may be
invariant length structures in nonbehavioral selected net-
works like Legos, and in nonselected networks like ecosys-
tems and social organizations [53], and in each case differ-
entiation increases with network size as well [1].

But why should selected behavioral networks have in-
variant-length structures? Size minimization is a fundamen-
tal principle in a variety of selected networks, including the
brain [15, 54 –73], vascular networks [74 – 82], and electronic
circuits (e.g., [83, 84]). From Figure 3 (and see Box 2) we can
see that network size scales up more slowly under the in-
variant-length approach than the universal-language ap-
proach. Accordingly, it is natural to hypothesize that the
invariant-length approach is followed for this reason [1, 16,
52, 85]. In the case of computer software (and any other
human-created network), structure length may also be con-
strained to be invariant because of comprehension limits of
the programmer.

How general might these observations be? In the net-
works discussed above, the nodes are themselves complex
objects in their own right, built from subsymbols. Might it
be that the invariant-length approach tends to hold when
the nodes are themselves complex, emergent objects, but
that the universal-language approach holds at lower levels?
For example, in electronic circuits, the nodes are often built
from a small finite repertoire of microelectronic subcompo-
nent types. In computer software, operators are built from a
fixed repertoire of Latin letters. Cells (and neurons) are built
from genes/proteins, and ultimately from four DNA bases.
And, of course, all physical formations are built from on the
order of 100 different atomic elements. Prima facie, then, it
would seem that the universal language approach domi-
nates at the lowest hierarchical levels. This conclusion,
however, is not warranted, as we now explain.

The two possible approaches for how combinations are
increased are defined relative to a designated pair of lower
and upper level. To show that the universal language ap-
proach applies, one must show that the number of lower-
level types, B, does not vary, over a wide range of upper-
level types, C. Furthermore, to reject the possibility that the
invariant-length approach applies—i.e., that the number of
lower-level types is increasing—the range of upper-level
types must be wide enough that one would expect to see an
increase in the number of lower-level types if the invariant-
length approach were being followed, given the likely mag-
nitude of the power-law exponent relating the pair of levels.

For example, consider DNA as the lower level, and amino
acids as the upper level. For all organisms, there are B � 4
lower-level types, and C � 20 upper-level types. That is, a
log-log plot of B versus C for very many species would result
in a plot with just one point, and nothing could therefore be

FIGURE 3

Illustration of the two main ways that structural repertoire size may be
increased. Each of the three rectangles shown represents a network,
where its nodes, but not its edges, are shown. The nodes come in
multiple types. On a single row in each network are nodes involved in
building a structure; the horizontal line connecting two nodes here
indicates that the nodes interact as part of a structure. Consider the
top, small network first, the one with 8 nodes coming in two types (F
and ■). Supposing that its nodes can combine into structures of
length two and that all such length-two combinations are allowed (or
grammatical), there are four structures that can be built. How may a
network accommodate twice this many structures? There are two
broadly different ways. The first is the universal language approach:
the box-network on the left has the same number of node types as the
small network, but is able to string them into structures of length
three, instead of just two, and it consequently can build the eight
structures shown inside it. Structures are like computer instructions,
or lines of code, and nodes are like operators (see Table 1). In this
light, the universal language approach accepts the cost of longer lines
of code (which takes up more space and may take more time to
implement) for the payoff of a reduced number of node types to build.
The second is the invariant-length approach: the network (the box on
the right) has one new node type (Œ), and is still confined to structures
of length two. With this new node type the network can also build
eight structures, as are shown row-by-row within it. In computer
software terms, the invariant-length approach sacrifices on node-
complexity in order to keep running-time and overall program size
low. Note that all these ideas hold more generally, even when we
abandon the simplification made for illustration-sake in this figure that
all combinations for the allowed length are grammatical. See Boxes 1
and 2 for more details.
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concluded concerning the possible scaling approaches.
Consider, instead, choosing DNA again as the lower-level,
but now choosing some much-higher level as the upper
level, such as the number of cell types, E. Again, B � 4 for all
life on Earth, but we will now have a range for the upper

level, E, from 1 to on the order of 100. At first glance, this
suggests the universal-language approach. However, to re-
ject the invariant-length approach, one must recognize that,
because the levels are so far removed from one another, the
combinatorial degree will tend to be extremely high [52],

Box 1: Some Details about Combinatorial
Systems

Simple Combinatorics
If there are 2 symbol types in a language, or combinatorial system (e.g., two lower-level behavior types, or perhaps two node types), and they
are strung together into combinations of length 3, then there are obviously 23 � 8 possible combinations. Letting S be the number of symbol types,
L be the combination-length, and E be the number of combinations (or “expressions”), we have E � SL. This, however, is insufficiently general,
for (i) only some fraction � of the total possible combinations might be allowable, or grammatical, and (ii) there may be constraints, or correlations,
between the co-occurrences of different symbol types and positions within the combination that reduce the effective length of combinations to d �

�L, where � is a constant in the interval (0,1]. More generally, then, the equation relating S, L and E is E � �S(E)�L(E), where S and L are written
as functions of E to emphasize that they are not necessarily to be treated as constants. We may write this as follows:

E � S�E�d�E�. (1)

Combinatorial Degree
The exponent in Equation (1), d � �L, is the combinatorial degree, and it is important to understand its interpretation. When a combination has
length L, there are a maximum of L potential degrees of freedom (or, a maximum base-S entropy of L). Not all of them, however, might be utilized
in a language. For example, in English, if you place some arbitrary word at the beginning of a sentence, it typically severely constrains the set
of probable words that might come next. Such constraints reduce the overall number of degrees of freedom to a value below L. The combinatorial
degree, d, is the actual number of degrees of freedom (or base-S entropy) of combinations for a combinatorial system. Intuitively, it is the effective
length of combinations, in that combinations scale as if they have lengths of d (rather than L). (When L � d, we say that the system is redundant.)
For example, English sentences typically have a length of on the order of 20 or so words, but their combinatorial degree is only on the order of
about 5 [85]. It is called “combinatorial degree” because it measures the “degree of combinatorialness” of a combinatorial system. The lowest
possible combinatorial degree is 1, and in that case the combinatorial system is not combinatorial at all, for in this case, to double the number
of combinations E requires doubling the number of symbol types S. Higher combinatorial degrees mean that the language is increasingly
combinatorial. The combination length L puts an upper limit on the combinatorial degree. (See Ref. 1 for the relationship with Shannon’s entropy.)

Increasing the Number of Possible Combinations
Figure 3 shows the two central ways for a kind of combinatorial system, or language, to increase the number of combinations allowed. The first
is the universal language approach, where the number of symbol types remains invariant: S � E0. To achieve more combinations, the combinatorial
degree (and length) must be increased, and, solving for d in Equation (1), it must increase logarithmically: d � log(E). The “opposite” way to
increase the number of combinations is the invariant-length approach, where, instead, the combinatorial degree (and length) remains invariant:
d � E0. To accommodate more combinations, the number of symbol types must be increased, and it must increase as a power law: S � E1/d,
where d is constant and �1. Thus, a log-log plot of S versus E gives a straight line, and the inverse of the slope is the combinatorial degree d.
The following summarizes how the number of symbol types, S, and the combinatorial degree, d, scale as a function of the number of allowed
combinations.

● Universal language: S � E0 and d � log(E).
● Invariant-length: S � E1/d and d � E0.

It should be recognized that there are a variety of in-between possibilities, where both d and S increase, such as where S � log(E), in which
case Equation (1) leads to the sublogarithmic scaling relationship d � log(E)/log(log(E)). However, in this article we treat the two approaches—the
universal-language and invariant-length approaches—as two null hypotheses, and we will primarily aim to reject one or the other.
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and the invariant-length approach would expect an accord-
ingly very small, possibly negligible, increase in the number
of lower-level types. As a toy example, consider the follow-
ing four levels: let B refer to the number of DNA base types,
C the number of amino acid types, D the number of protein
types, and E the number of cell types. What are the power-
law exponents relating each adjacent pair of levels? Given
the actual number of bases and amino acids (i.e., 4 and 20),
B and C are related as C � B2.16, i.e., an estimated combi-
natorial degree of b � 2 between that pair of levels. We have
no data for the combinatorial degree, c, relating levels C
(amino acids) and D (proteins), and will momentarily leave
it variable. We will approximate the combinatorial degree
between levels D and E by the combinatorial degree relating
the number of genes and the number of cell types, which is
approximately on the order of 3, or d � 3 [1]. Consider now

the total combinatorial degree relating B and E. By combin-
ing the previous scaling equations for the adjacent levels, we
have E � Dd � [Cc]d � [(Bb)c]d � Bbcd; i.e., E � Bbcd. One can
see that the combinatorial degree between far-removed lev-
els— here between B (base types) and E (cell types)—is the
product of the combinatorial degrees for all the adjacent
pairs in between. In particular, with b � 2 and d � 3, we
have E � B6c. The combinatorial degree, c, relating levels C
and D—amino acids and proteins—is plausibly quite high,
but even if it were only 5, we would have E � B30, or B �

E1/30. The number of cell types, E, ranges over a factor of
about 100, and from this we would expect the number of
base types, B, to range over a factor of (100)1/30, or only 1.16.
Therefore, given the variation that exists on Earth, it is not
possible to determine whether DNA follows a universal-
language or an invariant-length approach. What one would

Box 2: Structures and Network Size
Combination Repertoire “Mass”
The “mass” of a combination repertoire, NE, is the total number of symbols required to write down a list of all the (E many) combinations in the
combination repertoire, or equivalently, the sum of the lengths of all the combinations. For example, for bird vocalization (see Section 2), a given
species’ song repertoire mass would be the sum of the lengths of all the different songs. For nodes combining into structures (see Section 1), the
structure repertoire mass is the sum of the lengths of all the structures in the network. The combination repertoire mass, NE, is just the number
of combinations, E, times combination length, L. The following summarizes how the combination repertoire mass scales under the two main scaling
possibilities (see Box 1), and how the number of symbol types, S, scales with mass (using what we know from Box 1 concerning how length scales
with number of combinations, E).

● Universal language: NE � Elog(E) and S � NE
0.

● Invariant-length: NE � E and S � NE
1/d.

Network Size
When the symbols are nodes, and the combinations are structures (as in Section 1), how does the combination repertoire mass, NE, relate
to the size of the network, N (i.e., the total number of nodes)? Nodes of different types combine locally to build structure types, and thus
in networks with more structure types, the number of copies, or tokens, of each node type must increase (see Figure 2). Structures,
however, interact globally with other structures in order to build behaviors (see Section 2), and it is therefore possible for the number of
copies of each structure type to remain invariant as the number of structure types increases. This is, in fact, what one might expect for
selected networks, where there is selective pressure to minimize the overall size of the network (see Refs. 1 and 85, and see the discussion
in Section 1), and in this case network size, N, is driven primarily by combination repertoire mass, NE, so that N � NE. This has been called
the “Minimal N Hypothesis” [1]. If the invariant-length approach applies for nodes combining to make structures—which is also expected
under a size-minimization desideratum—then it would follow that N � E, i.e., network size would scale directly proportional to the number
of structure types. And, the inverse slope of a log-log plot of the number of node types, S, versus network size, N, would be a measure
of the combinatorial degree relating S and E. Unless otherwise stated in the text, our default operational assumption will be that N � NE

for selected networks. That is, we will assume that network size, N, is primarily driven by structure repertoire mass, NE, and given this,
the following summarizes how network size relates to the number of structure types, E, and also how the number of node types, S, scales
with network size, under the two possible scaling approaches.

● Universal language: N � Elog(E) and S � N0.
● Invariant-length: N � E and S � iN1/d.

Our central observations will rely only upon the weaker assumption that N and NE are related by some power law.

© 2005 Wiley Periodicals, Inc. C O M P L E X I T Y 19



FIGURE 4

How greater structural repertoire size is accommodated in a variety of behavioral networks. Each plot is a log-log (base 10) plot of number of node types
versus network size. The moral here is that the number of node types (i.e., network differentiation) increases as network size and the number of structures
increases, and thus the universal language approach is not followed. Instead, the invariant-length approach appears to be followed, suggesting that there
are invariant-length structures (think: invariant-length lines of code) in each of these networks. The data for neocortex comes from Ref. 132 and Ref. 133,
where we counted all distinct types of neurons they found using immunoreactive and morphological criteria. Neocortex network size was measured as the
number of neurons corrected for the body size of an animal, called the neuron encephalization quotient, NEQ (computed as the 2/3 power of the traditional
encephalization quotient, which is brain volume divided by body mass to the 3/4 power, see Ref. 1). NEQ was used rather than the number of neurons
because it is known that encephalization quotients correlate well with measures of behavioral complexity [see Figure 9(a)], but that brain size does not [16,
111, 134]. Plotting the number of neuron types against total neuron number (not shown here), uncorrected for body size, leads to a lower slope (0.04) and
correlation (R2 � 0.38), but still significant (df � 8, t � 2.07, p � 0.05 for one-way t-test). The data for retina are from [135–137] (counts do not include
epithelial or glial cells). Each point in the plot for organisms is a species, for more than 30 phyla, and the data are from Ref. 20. See Ref. 1 for more
information about the other plots, except for software, which is new here, and was obtained from data in [42–48]. (Note that Halstead’s theories [42] are
not well-founded, but using his data is appropriate.) The business plot is for employment insurance companies [38]. Best-fit power law and correlation are
shown. Also shown are the combinatorial degree values, d, for the systems, which is the inverse of the best-fit exponent, and measures how combinatorially
the node types are used to build structures.
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ideally require are alternative possible life-forms— ones that
did not, as a matter of fact, come to be—where some utilize
a much greater number of amino acid types than the actual
20, and measure whether they have any increase in the
number of base types (invariant-length approach), or
whether they, instead, have an increased codon length (uni-
versal language approach).

The argument we have made concerning DNA applies
in an analogous fashion to the other kinds of networks
where there seem to be, at first glance, a universal set of
subcomponents (e.g., a fixed set of microelectronic sub-
components underlying all electrical component types).
In most such cases, it is not possible to distinguish be-
tween the distinct scaling possibilities, and thus they do
not provide counterexamples to the invariant-length ap-
proach. That is, at the lowest hierarchical levels in hier-
archies with multiple levels above, both the universal-
language and invariant-length approaches expect the
number of lowest-level types to remain constant. From
the results of this section, one might reasonably argue as
follows: in the cases (i.e., pairs of levels) where we are

able to test between the universal-language and invari-
ant-length approaches, we find greater conformance to
an invariant-length approach. This should lead us to fa-
vor this approach in those cases for which data do not
exist.

We record our empirical findings in regards to structural
repertoire size increase as the following “observation.”

Observation 1: Invariant-Length Structures and Pow-
er-Law Differentiation: Behavioral selected networks
(at least many for which the nodes are themselves
complex objects) increase their structural repertoire
size by increasing the number of node types, not by
increasing the length (nor the combinatorial degree)
of structures (i.e., the number of nodes per structure).

The predominance of nonuniversal-language ap-
proaches we see here and in Section 2 may provide reasons
for doubting Wolfram’s Principle of Computational Equiv-
alence [86], although there is some uncertainty in the in-
tended meaning of the principle [87].

FIGURE 5

Evidence of invariant length structures in nervous systems and software. Figure 4 shows that differentiation (i.e., the number of node types) scales as a
power law with network size, which implies the invariant-length approach. Another way to test that networks follow the invariant-length approach is to see
if the structures in that kind of network have invariant length. This has the disadvantage of requiring us to hypothesize about what the structures might
specifically be (whereas the power law plots of Figure 4 allow us to conclude “invariant-length” without actually knowing what the structures exactly are).
(a) In neocortex, one of the more plausible ideas as to what a structure might be is the minicolumn. The number of neurons in a minicolumn (i.e., minicolumn
length) indeed appears to be independent of brain size (see Ref. 7), and this can also be concluded from the fact that neocortical thickness scales as the
1/9 power of gray matter volume, just fast enough to counteract the linear density decrease of �1/9 (see Ref. 15). Another plausible idea as to what a
neocortical structure might be is the module, which refers to columns (not minicolumns), barrels, blobs, stripes, and other anatomical features. (Modules
have many minicolumns in them.) The plot shows a log-log (base 10) plot of the average diameter of a module (measured in microns along the neocortex
surface, and taken from Ref. 138) versus the inverse of linear neuron density. Linear neuron density is measured as the �1/9 power of brain volume (see
Ref. 15). The idea here is this: Neuron density decreases in larger brains, so an invariant number of neurons per module would nevertheless mean a
physically larger module. By plotting these two quantities, a slope of one would mean that modules are expanding in size only as much as would be expected
due to the density decrease, and thus the number of neurons per module is actually invariant. The slope is, indeed, very close to one. (See also Ref. 16.)
(b) A structure in computer software is something like an instruction, which is usually on a single line of code. If lines of code have invariant length, we
expect that the number of lines of code should scale proportionally with network size. The plot here shows that, indeed, they scale proportionally. These
data are from Refs. 44 and 48.
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2. BUILDING BEHAVIORS FROM SIMPLER BEHAVIORS
Behaviors are often hierarchically organized, with lower-

level behaviors combining to make higher-level behaviors,
and these, in turn, combining to instantiate still-higher-
level behaviors [88 –100]. For example, mammalian behav-
ior can be viewed as the interaction of multiple muscle
activations of different types to carry out a whole-body
behavior. In bird vocalization, syllables are put together to
make songs. In computer software, instructions (each typi-
cally on a single line of code) sequentially cooperate to run
a computation, which can be thought of as a computational
behavior. And, in electronic devices (like a calculator, say),
simple actions caused by a button-press combine to realize
a device function (such as “3 	 2 � ”; see Table 2).

In this section we ask, In what manner are lower-level
behaviors used to build a greater number of higher-level
behaviors? There are broadly two different ways, analogous
to our earlier discussion for nodes and structures. The first
is the universal language approach, where the number of
lower-level behavior types is kept fixed, or universal, and a
greater number of higher-level behaviors is achieved via
increasing the length of the higher-level behaviors (i.e., via
increasing the number of lower-level behaviors per single
higher-level behavior). Higher-level behavior length must,
in fact, scale up as the logarithm of the number of higher-
level behaviors for this case (see Box 1). The second is the
invariant length approach, where the length of a higher-
level behavior is kept fixed, or invariant, and a greater num-
ber of higher-level behaviors is accommodated via having a
greater number of lower-level behavior types with which to
build the higher-level behaviors. The number of lower-level
behavior types must, in this case, increase as a power law
with the number of higher-level behaviors, with a positive
exponent less than or equal to one (see Box 1).

So, how do lower-level behaviors accommodate a greater
number of higher-level behavior types? Figure 6 presents
data for five kinds of lower-level/higher-level behavior
pairs: (6a) Number of muscle types (i.e., number of muscle-
level behavior types) versus number of behaviors as mea-

sured by ethologists, across mammals,
(6b) number of bird syllable types versus
number of songs in the repertoire, across
a variety of species of song bird, (6c) vo-
cabulary growth versus growth in the
number of written sentences, in the En-
glish-speaking community over 800 years,
(6d) number of stroke types versus num-
ber of characters, across writing systems
over human history, and (6e) number of
basic electronic device actions (measured
as the number of button-press types, i.e.,
the number of buttons) versus the num-
ber of higher-level device functions (mea-
sured by the length of the user’s manual),
across compact disc players, televisions,

video casette recorders, and calculators. In each case, the
number of lower-level behavior types increases as the num-
ber of higher-level behavior types is increased (Figure 6). In
each case the increase is consistent with a power law, and
thus the invariant-length approach is implicated, and we
can reject the universal language approach.

How general are these results concerning lower and
higher-level behaviors? For the behaviors discussed above
(and in Figure 6), the lower-level behaviors are complex
behaviors in their own right, built from even lower-level
behaviors. Might it be that the invariant-length approach
tends to hold when the behaviors are themselves higher-
level behaviors, but that the universal language approach
holds at the lowest behavioral levels? First, as we have
learned from the discussion in Section 1, when there are
many levels above a given lower-level, one must be cautious
if one finds an unchanging number of lower-level types, for
it is often the case that both the universal-language and
invariant-length approaches expect a constant number of
lower-level types. For example, present-day computers may
possess microprocessors with a small, universal set of prim-
itive behaviors, and this might lead one to think the univer-
sal-language approach applies. However, given the plethora
of hierarchical levels in contemporary computation, as was
the case for DNA, the invariant-length approach may well
expect the lowest-level behavioral repertoire size to not
increase over the actual range of computational behaviors
found among computers today. Second, and as we now
argue, the results from Section 1 tell us that the lowest
behavioral levels do follow the invariant-length approach.

Structures—themselves the largest objects built locally
from nodes, as discussed in Section 1—are defined as the
primitive, or lowest-level, behavior-expressing parts of a
network, which interact globally with one another to imple-
ment higher-level behaviors (see Figure 7). The way that
structures interact to build higher-level things is different in
kind than the way nodes interact to build structures, for
structures interact globally with other structures, whereas

TABLE 2

Some Example Hierarchical Relationships for Behaviors, where the Lower-Level Behaviors
Combine to Make Higher-Level Behaviors

Lower-Level Behavior Higher-Level Behavior

Mammalian behavior Basic muscle actions Simple ethogram behaviors
Bird vocalization Syllables Songs
Electronic devices Basic button-press actions Device functions
English language Words Sentences
Writing systems Strokes Characters
Computer software Instructions (lines of code) Runs
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FIGURE 6

How lower-level behaviors accommodate a greater number of higher-level behaviors. The moral here is that the number of lower-level behavior types (think:
symbols) increases as the higher-level behavioral repertoire size increases, and thus the universal language approach for behaviors can be rejected.
Combinatorial degree values, d, are shown, which measures how combinatorially lower-level behaviors combine to build higher-level behaviors; d is the
inverse of the best-fit power-law exponent of the number of lower-level behaviors versus the number of higher-level behaviors. (a) Log-log (base 10) plot
of number of muscle types (e.g., triceps, sartorius) and number of ethobehavior types (simple whole-animal behaviors), each as a function of encephalization
quotient (which is brain mass corrected for body mass). Each point represents a mammalian order (for data see Refs. 16 and 134). One can see that the
number of muscle types (slowly) increases as behavioral complexity increases. (b) Log-log plot of number of syllable types versus number of songs in 23
species of bird (for data see Ref. 16). (c) Plots of the log growth of the English vocabulary (measured by the Oxford English Dictionary, Second Edition) and
sentences (measured by the number of new books, via WorldCat) over the last 800 years. Vocabulary size grows disproportionately slowly compared to the
number of sentences, with a combinatorial degree of approximately 5, consistent with comprehension limits. See Refs. 16 and 85 for full discussion. (d)
Log-log plot of the number of stroke types versus number of characters in 91 scripts (including 18 numeral systems, 36 alphabets, 22 abugidas, 9 abjads,
and 6 syllabaries) from human history. See Ref. 139 for full discussion. (e) Log-log plots of number of buttons versus number of user’s manual pages, for
four kinds of electronic device [52, 85]. Each button-press elicits a lower-level behavior from the electronic circuit network underlying the device, and
combinations of these “symbols” are higher-level behaviors. Electronic devices like those shown here are useful kinds of electronic circuits for studying
behaviors, for they come with user’s manuals which aid us in estimating the number of higher-level behaviors (under the plausible assumption that doubling
the number of device-functions tends to double the length of the user’s manual).
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nodes interact locally to build structures. It is the global
interaction that makes it intuitively reasonable to call the
interactions “behaviors” of the network, and the structures
the “primitive behaviors.” This difference in kind also leads
to a difference in that the number of copies of a given node
type must increase as that node type is used in more struc-
tures, but the number of copies of a given structure type
need not increase as that structure type is used in more
behaviors. This is because one (or some fixed number of
copies of the) structure type token can itself be used in
many different higher-level behaviors, akin to the way that
a single muscle, say a bicep, participates in a host of behav-
iors. Structures may accommodate increased higher-level
behavioral repertoire sizes in the two possible manners
discussed earlier, the universal-language and invariant-
length approaches, and illustrated in Figure 8.

How do structures in behavioral selected networks ac-
commodate a greater number of higher-level behaviors?
Our results from Section 1, concerning how node differen-
tiation increases with network size, inform us that struc-
tures conform to the invariant-length approach. Here is
why. The number of node types increases with network size
(see Figure 4) and that must be in order to build a dispro-
portionately increasing number of structure types (since
nodes are used combinatorially). Or, equivalently, if the
number of structure types did not scale up with network
size in order to accommodate a greater number of higher-
level behaviors, then we would not expect the number of
node types to increase with network size. But the number of

node types does increase with network size, meaning that
the number of structure types must also be increasing. The
invariant-length approach therefore appears to govern even
lowest-level behaviors; that is, structures follow the invari-
ant-length approach when they globally combine to make
higher-level behaviors.

FIGURE 7

Behaviors by networks are built out of global combinations of lower-
level behaviors, and so on until the lowest level of primitive behaviors.
Such primitive behaviors are elicited by parts of a network, or
structures: a structure is a local combination of nodes that expresses
a primitive behavior. Left: The rectangular box shows a network,
inside of which are eight distinct structures. The nodes and edges are
not shown. Right: These structures act as primitive behaviors in the
global construction of network-level behaviors, and a list of such
behaviors is shown, built from sequences of structures. (These be-
haviors may, in turn, be used as components to build yet higher-level
behaviors.)

FIGURE 8

Illustration of the two main ways that structures may accommodate an
increased behavioral repertoire size. At the top is a box depicting a
network with two distinct structures. Supposing for simplicity that the
network can build behaviors of length two (i.e., two structures per
behavior), and that all such length-two combinations are allowed (or
grammatical), its repertoire consists of the four behaviors shown
below the box. How may a network accommodate twice this many
behaviors? There are two broadly different ways. The first is the
universal language approach: the box-network on the top left has the
same two structures, but is able to string them into behaviors of
length three, consequently having the eight behaviors shown below
the box. Behaviors are like computer runs, and structures are like
instructions, or lines of code (see Table 2), and in this light we may
say that the universal language approach sacrifices on running-time
(i.e., number of instructions per behavioral run) in order to keep the
program (i.e., network) size to a minimum. The second is the invari-
ant-length approach: the network (the box on the upper right) has one
new kind of structure, and is still confined to behaviors of length two.
With this new structure the network can also build eight behaviors, as
shown below it. In computer software terms, the invariant-length
approach sacrifices on size in order to keep running-time low. All
these same ideas hold more generally, even when we abandon the
simplification made for illustration sake in this figure that all combi-
nations for the allowed length are grammatical (see Box 1).
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We may now more explicitly examine how the number of
structure types scales with the number of higher-level net-
work behaviors. Under the invariant-length approach for
nodes combining into structures, network structures have
invariant lengths, and thus network size scales in direct
proportion to the number of structure types. (Network size
would scale a bit more quickly than the number of structure
types if the universal-language approach for nodes combin-
ing into structures were to hold, as discussed in Box 2.) If the
invariant-length approach also holds for structures combin-
ing to make higher-level behaviors, then we expect network
size to scale up as a function of the number of higher-level
behaviors and to do so disproportionately slowly. The uni-
versal-language approach, on the other hand, would expect
that network size does not increase as a function of the
number of higher-level behaviors (see Figure 8). Figure 9
shows how network size scales with behavioral repertoire
size, for neocortex [Figure 9(a)] and computer software [Fig-
ure 9(b)]. In Figure 9(a), neocortical network size (on the y
axis) is measured as the number of neurons in neocortex,
corrected for body size (i.e., the neuron encephalization
quotient, see legend of Figure 4), and one can see that as
behavioral repertoire size (along the x axis) increases, so
does the neuron encephalization quotient (i.e., the measure
of network size, along the y axis). Furthermore, also as
expected, the neuron encephalization quotient increases
disproportionately slowly as a function of the behavioral
repertoire size (i.e., the exponent is �1). Neocortical struc-
tures, then, do not follow the universal-language approach
in the construction of higher-level behaviors. Figure 9(b)
shows data on how software size increases as a function of
the size of the help file. As in electronic devices, help file size
may be expected to scale more in line with the total behav-
ioral repertoire size of the software, since it is this behav-
ioral repertoire that needs to be explained to the user. The
plot in Figure 9(b) shows that software size (y-axis) increases
as a function of software behavioral repertoire size (x-axis),
and also increases disproportionately slowly. Computer
software, therefore, also does not follow a universal lan-
guage approach in using structures to accommodate greater
behavioral repertoire size.

Let us sum up what we have learned thus far in this
section. Figure 6 shows that the invariant-length approach
applies to a wide variety of lower and upper behavioral
levels, when the lower-level is (possibly) not the lowest level
(the structures). We then argued that the fact that node
differentiation increases in larger networks—i.e., the results
from Figure 4 in Section 1—tells us that the invariant-length
approach is also followed by the structures, the lowest-level
behaviors, in their combining to build higher-level behav-
iors. This is because node differentiation would only in-
crease in order to increase the number of structure types;
therefore, the fact that node differentiation increases in
larger networks is a signal that the number of structure

types is increasing, something that would not occur if the
universal-language approach applied to structures combin-
ing to build higher-level behaviors. In addition, we saw

FIGURE 9

How structures accommodate greater behavioral repertoire size. In
each case, network size (y axis) increases as a function of the number
of higher-level behavior types (x axis), consistent with greater behav-
ioral repertoire size being accommodated by a greater number of
structure types (which requires greater network size). (a) Log-log
(base 10) plot of neuron encephalization quotient (i.e., neocortical
network size, corrected for body mass, see legend of Figure 4) versus
number of behaviors (as measured within the ethology literature, see
Refs. 16 and 134). We use neuron encephalization quotient here,
rather than total neocortex network size, since ethological behavioral
repertoire size correlates much better with neuron encephalization
quotient than with brain size, the latter correlation which is R2 � 0.10
(not shown), and is not significant (df � 6, t � 0.82, p � 0.2). Larger
brain size may correlate with greater behavioral repertoire size as
well, but where the behaviors are not the outwardly visible ones
measured by ethologists, but, instead, “housekeeping” ones dealing
with the animal’s greater body mass. (b) Log-log plot of program size
versus help file size for software found in a Windows operating system
(EasySQLite, NotesSQL, Quicken 2001, Lotus 123, Winzip, PowerDVD,
Encarta Encyclopedia, Encarta World Atlas, Encarta Dictionary, Rock-
well, Siemens Wireless PC Card, Symantec LiveUpdate, EasyCalc,
Office, Matlab, Intuit, Easy Button, Windows Media Player, Wordpad,
Internet Explorer).
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more explicitly in Figure 9 that the number of structure
types increases (and disproportionately slowly) as higher-
level behavioral repertoire size is increased. Together, these
results suggest that behaviors are typically built using the
invariant-length approach, even at the lowest behavioral
levels, the structures. We record this as a second “observa-
tion.”

Observation 2: Invariant-Length Behaviors: Behav-
ioral selected networks increase their higher-level be-
havioral repertoire size largely (or exclusively) by in-
creasing the number of lower-level behaviors, not
primarily by increasing the length (nor the combina-
torial degree) of the higher-level behaviors. This ap-
pears to hold even for the lowest-level behaviors, or
structures, in their combining to build higher-level
behaviors.

This “behavioral nonuniversality” is a central driver of
the organization of behavioral selected networks, as we will
discuss in detail in Section 5, for it is because of this that (a)
the number of structure types (the lowest-level behaviors)
increases, and (b) behaviorally more complex networks be-
come larger (see Figure 8). The fact that the number of
structure types increases explains two organizational fea-
tures. First, it explains why node differentiation increases: in
order for nodes to build the greater structural repertoire
using the invariant-length approach requires new node
types (see Figure 3). Second, as we will see in Section 3, a
greater number of structure types requires disproportion-
ately quickly increasing the total number of edges between
structures. Finally, the fact that behaviorally more complex
networks become larger leads to greater compartmentaliza-
tion, as we will see in Section 4.

Why, one might ask, do networks of a given kind need to
increase the number of structure types (and thus increase
network size) at all? Why not, instead, just build more and
more high-level behaviors using a universal repertoire of
structure types? Figure 8 depicts overall network size re-
maining invariant under the universal language approach,
but this is, in fact, not possible in the long run, for reasons
having to do with Kolgomorov complexity: as the repertoire
of higher-level behaviors increases, eventually the mini-
mum size program that can implement that repertoire in-
creases in size. Although the network size cannot, then,
remain invariant, it may nevertheless increase very signifi-
cantly less quickly than network size under the invariant-
length approach. What is costly about the universal lan-
guage approach to building behaviors is that it leads to
behavior lengths becoming increasingly long (see Figure 8),
and, accordingly, taking longer to compute. We propose that
because behaviors in all selected networks are under time
constraints, that sets an upper limit to behavior length; and
this, in turn, leads to the invariant-length approach. For

example, when software engineers aim to increase the be-
havioral repertoire size for their computer software (i.e.,
increase the number of things their software can do), they
are under running-time constraints; the behaviors of inter-
est for their software are only those that may be run in some
feasible number of steps. Such a limit on the number of
steps is, in essence, a limit on the number of lower-level
behaviors (i.e., instructions, the structures in programs) that
can be part of a behavior (i.e., part of a run). This is why
faster running-time algorithms tend to possess more dis-
tinct lines of code (more structure types) than slower algo-
rithms: a faster running-time algorithm has a greater behav-
ioral repertoire size (that is, given feasibility constraints the
algorithm can carry out more behaviors), and, just like the
other behavioral networks we have seen, the number of
lower-level behavior types (instruction types) increases.

3. CONNECTIVITY AND NETWORK DIAMETER FOR
BEHAVIORS

Thus far, our cartoon illustrations of behavioral networks
(Figures 2 and 7) have not shown edges. But, of course, nodes
must be interconnected in order for networks to work (Figure
10). Table 3 lists some example nodes, structures, and edges in
several kinds of networks. There are two central reasons for
needing edges. The first is that nodes must connect with one
another locally in the assembly of structures. Because (as we
have seen in Section 1) structures have invariant length, the
number of edges per node need not increase in larger net-
works to maintain intra-structure connectivity, and we accord-
ingly do not expect intra-structure connectivity to be a driving
force on overall network connectivity. The second central rea-
son for edges in behavioral networks is that structures must
globally communicate with one another in order to act in a
concerted fashion in the construction of a behavior. Since the
number of distinct structures increases with network size (see
Sections 1 and 2), there are potentially an ever-increasing

FIGURE 10

Nodes in networks are connected via edges. Left: The rectangular box
shows a network, inside of which are four distinct structures (the big
shaped outlines), and one can see within them the nodes making
them up. The edges are not shown. Right: Nodes interact with one
another via edges, which up to this point, we have ignored.
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number of struc-
tures with which a
structure may need
to interact. To un-
derstand connectiv-
ity in behavioral net-
works, it is therefore
crucial that we un-
derstand how be-
havioral networks
solve the problem of
structure-structure
communication.

The question,
then, is how does
structure-degree (the
number of structures
with which a struc-
ture connects) in-
crease as structural
repertoire size in-
creases? Since structures are invariant in length, this ques-
tion is equivalent to asking how structure-degree increases
with network size. Figure 11 illustrates the three qualita-
tively different manners in which structure-degree may be
increased. The first is the invariant-degree approach, where
structure-degree does not vary as a function of network size.
A consequence of this kind of connectivity scaling is that
network diameter (which is the average distance between
two structures, in terms of the number of edges that must
be passed through to get from to the other) enlarges with
network size (see Box 3). The “opposite” method of scal-
ing connectivity is the full-degree approach, where struc-
ture-degree scales up proportionally with network size, so
that, independent of network size, each structure con-
nects to a fixed fraction of all the structures. This would
lead to the lowest possible network diameter, and ap-
proximately equal to one for sufficiently large networks
(supposing the network is random or small-world, see
Box 3). The third mode of increasing connectivity is to
take a middle-of-the-road approach between the previ-
ous two extremes, and we call this the in-between-degree
approach. Here, structure-degree increases as a power
law with network size, but disproportionately slowly. Un-
der this approach, network diameter would be higher
than in the full-degree approach, but would remain in-
variant (supposing, again, that the network is random or
small-world).

What happens in real behavioral networks? Figure 12
shows data on how the total number of connections scales
with the number of structures, for neocortex, electronic cir-
cuits, and web sites. Exponents of 1 in the plots would be the
signature of the invariant-degree approach, exponents of 2 the
signature of the full-degree approach, and exponents in be-

tween for the in-between-degree approach. In each of these
cases connectivity scales as expected for the in-between-
degree approach. The network diameter is, accordingly, ex-
pected to remain invariant. In particular, network diameters
for these three networks may be very approximately 2 for
neocortex [15], 1.7 for electronic circuits, and 4 for web sites.

We distill our empirical findings on how connectivity ap-
pears to scale with network size as the following observation.

Observation 3: Invariant Network Diameter � 1: In
behavioral selected networks, structure-degree (the
number of edges per structure) increases as a power
law with network size, but disproportionately slowly;
and because behavioral networks are typically small-
world (see Box 3), the network diameter is an invari-
ant and greater than 1 (and approximately equal to
the inverse of the exponent relating structure-degree
to network size).

Scaling in this fashion would not generally be expected
in nonselected networks. For example, in ecosystems, the
number of individual animals with which any animal
trophically interacts is probably independent of network
size; intuitively, a lion will eat only so many prey in its
lifetime, independent of ecosystem size. This is not to be
confused with the fact that larger ecosystems have species
with more connections in a food web; this is to confuse a
network (the ecosystem) with its symbol-type-network (the
food web) [see Box 3 and Ref. 1].

Why does connectivity follow the in-between-degree ap-
proach in behavioral networks? First, let us ask why behav-
ioral networks do not follow the invariant-degree approach?
Connection costs would be minimized under the invariant-
degree approach, so why not conform to it? Actually, we are

TABLE 3

Some Example Nodes, Structures, and Edges in Behavioral Selected Networks

Node Structure Edge

Nervous systems Neuron Minicolumn?, Module? Axon
Electronic devices Electronic component Basic functional circuit Wire
Computer software Operator Instruction, line of code Program flow edge
Web sites Word and pictures Web page Link

Web sites are behavioral networks: they are often designed such that sequential combinations of web pages satisfy the needs
of the browser, and the web site behavior is the sequence of web pages “activated” when the web site is traversed by a
browser. For web sites, we take the words and pictures to be the nodes, for they are the “smallest meaningful units.” They
locally combine to make up web pages, which are plausible candidate structures (or primitive behaviors). Web sites differ from
other networks in that the nodes in other networks can have a degree greater than one. For example, neurons connect to
many neurons, and neural structures connect to more structures by increasing the number of neurons to which a neuron
connects. For web sites, however, each word on a web page can link to at most one other page. Greater structure-degree
is possible by adding more and more “connection-nodes” to a page (i.e., a structure), nodes whose only job is to link. See
also the legend of Figure 12.
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already in a position to answer this on the basis of the
behavioral generalization we have made earlier in Section 2.
We saw then that, across networks of a given kind, behaviors
appear to have invariant lengths (i.e., an invariant number
of lowest-level behaviors, or structures). If connectivity
scaled with invariant-degrees, then network diameter would
get increasingly long in larger, more behavioral, networks.
But larger network diameter has the consequence of making
behavioral length progressively increase relative to the com-

binatorial degree (the number of degrees of freedom in the
construction of a behavior from structures, see Boxes 1 and
3). (This is to say that the redundancy of behavior increases;
see Box 3). To maintain an invariant combinatorial degree,
behavior length would have to increase proportionally with
network diameter. (Maintenance of an invariant length, at
the expense of a decreasing combinatorial degree, could be
maintained only until the combinatorial degree reaches
one, at which point behavioral length must again increase.)

FIGURE 11

Illustration of the three qualitatively distinct ways in which structure-degree (the number of structures with which a structure connects) may increase with
network size. Under the invariant-degree approach, structure-degree remains constant, and so the total number of edges scales proportionally with network
size. If this possibility were true, network diameter (the average distance between two structures in the network, in terms of the number of edges that must
be traversed) would increase proportionally with network size. Behaviors (combinations of structures) would have to become longer and longer (and more
redundant) in larger (more behaviorally complex) networks (see Box 3). This approach thus achieves minimal wiring, but suffers the costs of an
ever-increasing network diameter and consequently lengthier (longer run-time) behaviors. Under the full-degree approach, on the other hand, structure-
degree scales proportionally with the number of structures, and total number of edges as the square. (Note that the “full-degree approach” does not require
full connectivity; structure-degree must simply scale up as if fully connected.) If this possibility were followed, network diameter would be invariant and
at a minimum, and approximately one in sufficiently large networks (see Box 3). This approach thus achieves minimal length (minimal run-time complexity)
behaviors, but bears the cost of having the greatest possible number of edges (the number of edges increases as the square of network size). Finally, there
is the in-between-degree approach, where structure-degree increases, but disproportionately slowly compared to the number of structures in the network,
and as a power law (i.e., exponent between 0 and 1). The total number of connections, then, scales faster than the number of structures, but slower than
as the square (i.e., an exponent between 1 and 2). If the networks are random or small-world, then the in-between-degree approach leads to network
diameters that are invariant and approximately equal to the inverse of the exponent relating structure-degree to network size (see Box 3). This case provides
a nice compromise between run-time behavior complexity (i.e., behavior length) and the burdens of network connectivity. For example if structure-degree
were to scale as the square root of network size—which means significantly slower growth in connectivity than the full-degree approach—then for large
networks, the diameter is invariant and low (approximately two). This is, in fact, how connectivity scales in neocortex [15]. Since we have seen that behavior
length is invariant (see Section 2), we expect that the invariant-degree approach is not followed. Since we also might expect that the full-degree approach
is exorbitantly costly in terms of connections, we expect behavioral networks to follow the in-between-degree approach.
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In short, structure-degree must increase at least as a power
law with the total number of structures in order to maintain
invariant length behaviors, and this, in turn, was for run-
ning-time minimization reasons. We accordingly expect

computer software to have increasing structure-degree (i.e.,
an increasing typical number of program-flow edges per
structure), but we do not currently possess structure-con-
nectivity data for software; that is the subject of future work.

Box 3 : Some Details about Symbol-type
Networks

Scaling of Connectivity, Network Diameter, and Small-Worlds
The diameter of a network is, over all pairs of nodes, the average number of edges that must be crossed to get from one node to the other. The
degree of a node is the number of edges impinging on that node. If the average degree, �, in a network does not increase with network size, N,
then the network diameter will increase. If, at the other extreme, � � N, then diameter is one, no matter the network size. What happens in
between these two extremes, where � � Nv, with 0 � v � 1? If the network is random (where there is a fixed probability that two nodes are
connected), the diameter 
 � (logN)/(log�) [120] [assuming N � � � log N � 1]. Since N � c�1/v (where c is a proportionality constant), we
may write 
 � [log(c�1/v)]/[log�] � (1/�) 	 (logc)/(log�). Since c is constant and � is increasing in larger networks, for sufficiently large networks

31/v. This is important, for network diameter can remain invariant despite the average degree scaling up disproportionately slowly with network
size. For example, if � � N1/2, then 
32 for sufficiently large networks. But networks of interest are rarely random, but very many kinds of
network have been argued to be small-world (see [123]), where there are enough long-range shortcuts that the network diameter is approximately
as low as that in a random network, despite retaining a highly organized topology. In the networks we study here, if connectivity scales up, we
will presume the network is small-world, for nearly every complex network studied has been discovered to be small-world: for example, airport
traffic [121], power grid [121], movie-actor collaborations [121], world wide web [122], acquaintances [121], the nervous system of C. elegans
[123], citation networks [124–126], electronic circuits [127]. (In our discussion in the text in Section 3, we will primarily be interested in the degree
of structures, not nodes, and the diameter between structures. The same points above apply, where structures are the nodes.)

Symbol-type Networks
A symbol-type network is any network where the vertices represent types of objects, or symbol types (rather than a traditional network, where
there may be multiple vertices of the same type). One example kind of symbol-type network is an ethogram, which consists of a vertex for each
of an animal’s distinct behaviors—all at the same hierarchical level—and an arrow points from one behavior to another just in case the first tends
to be followed by the next. (For example, if one treats the structures in networks as the vertices, then if each structure tends to be unique—at
least in regard to scaling, such networks are symbol-type-networks.) Another kind of symbol-type-network is a food web, where each vertex
represents a species, and an arrow points from one species to another just in case there are animals of the first species that sometimes eat animals
of the second. Many kinds of symbol-type networks have also been found to be small-world networks.

Redundancy
Suppose that a symbol-type-network has S vertices, or symbol types, that � is the average degree, and that symbol combinations are of length
L. (Also suppose the symbol-type network is a small-world network.) How many possible combinations are there? Any of the S symbol types may
interact with � possible symbol types, which in turn may interact with � others, and so on until L symbols have been put into the combination.
Thus, there are E � S�L�1 many possible combinations. If � � Sv, with v a constant in the interval [0, 1], then we may conclude that E �

S(Sv)L�1 � SvL�v	1. Recall from Box 1 that E � Sd, where d is the combinatorial degree. We may therefore set the exponents of the two previous
relationships equal to one another, and we have d � vL � v 	 1, or v � (d � 1)/(L � 1). The exponent v (if v � 0) from the relationship � �

Sv is roughly the ratio of the combinatorial degree divided by the total potential combinatorial degree (or entropy divided by the total possible
entropy). 1/v is, accordingly, a measure of the amount of redundancy in the combinatorial system. Recall (from earlier in this Box) that 1/v is also,
for sufficiently large (small-world) networks, approximately the network diameter, and thus network diameter and redundancy are roughly
equivalent. The reason, informally, is this: a diameter of 
 means that if one symbol type in the symbol-type network needs to interact with some
other particular symbol type (for the purposes of some particular combination), then communication must proceed via �
 other symbol types.
These scaling techniques were employed to argue that nodes are used combinatorially in metabolic networks (see Figure 8b of Ref. 1 from which
one may compute that v � 0.28 � 0, a signature that a network is using its nodes combinatorially), and in electronic circuits (see Figure 2c of
Ref. 1 from which one may compute that v � 1 � 0). They are also used in Section 3 of the current article, concerning the manner in which
structures (or the primitive behaviors) interconnect for the purpose of combining to build behaviors.
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Why structure-degree does not scale up as in the full-degree
approach is presumably because of the exorbitant connec-
tion costs (see earlier citations on volume optimization
principles in networks in Section 1), for the total number of
connections would then scale as the square of network size.

The above may help explain why behavioral networks
follow the in-between-degree approach, but it leaves us in
the dark as to why connectivity scales precisely as it does.
Explaining the particular exponent relating connectivity and
network size may depend on network-specific issues. For
example, for neocortex, Changizi [15, 16, 72] put forth a
theory of economical well-connectedness explaining why
neuron-degree scales as the square root of network size (see
the next section, and Figure 17), but the second of the two
assumptions of the theory (“invariant area-infiltration”)
may not be expected to be satisfied in other kinds of behav-
ioral networks. One conjecture for why web sites scale con-
nectivity the way they do is that it results in a network
diameter on the order of four (4.3), which may be due to an
upper limit on how many links consumers are willing or
able to wade through to get from any one part of a web site
to another (perhaps for working memory reasons).

There are a number of consequences of an increasing
structure-degree in networks, and they have been worked
out in detail mostly for neocortex [15, 16, 72]. One conse-
quence is that more and more space must be devoted to
connection considerations. In neocortex, structure-degree
increase is achieved by increasing the number of synapses
per neuron [Figure 12(a)], and neuron density accordingly
falls in larger brains [ 8, 11, 101–103]; namely neuron density
scales as the �1/3 power of gray matter volume, or, equiv-
alently, number of neurons scales as the 2/3 power of gray
matter volume. From this we may conclude that gray matter
volume (or mass) scales as the number of neurons to the
power of 1.5, and this has an analogy in web sites, where the

FIGURE 12

The manner in which connectivity scales with the number of struc-
tures, in three kinds of behavioral network: neocortex, electronic
circuits, and web sites. Each follows the in-between-degree ap-
proach. (a) Log-log (base 10) plot of the total number of neocortical
synapses versus neocortical network size (the latter which scales
proportionally with the number of structures supposing neocortex has
invariant-length structures, see Section 1). Data are computed using
data from Ref. 101, who present data for how neuron density de-
creases in larger brains (namely, it decreases as the �1/3 power of
brain volume). Since synapse density remains invariant [15, 140], a
neuron density decrease corresponds to an increase in the number of
synapses per neuron (neuron-degree). Since, as we see here, the total
number of connections scales as the 3/2 power of network size, this
corresponds to number of synapses per neuron scaling as the (3/2 �
1 �) 1/2 power of network size. If the neocortex is small-world, the
network diameter will be approximately the inverse of this exponent,
or 2 (see Ref. 15 and Box 3). (b) Log-log plot of the total number of
connections versus network size, for electronic circuits found in Ref.
141. Because of overlapping data points, for visualization sake, each
data point has been perturbed by adding a random jitter in the interval

FIGURE 12 Continued. [�0.05, 0.05] to the x and y values. The scaling exponent
is �1.6, and so degree scales as the 0.6 power of network size. Network diameter
here is approximately (1/0.6 �) 1.7. (c) Log-log plot of the total number of
intra-web-site connections versus the number of web pages at the site, for 11
commercial web sites (plumtree, e4me, thesinc, corel, google, dell, att, palm,
panasonic, sparkletts and sony), which we determined using a freeware web-
crawler Xenu. The scaling exponent is about 1.23, and so degree scales as the
0.23 power of network size, corresponding to a network diameter of about 4 for
web sites, independent of size. Since greater structure-degree is accommodated
in web sites by increasing the number of “connection nodes” (rather than
increasing node-degree as in most other networks), we expect that the average
size of a web page (or structure) should increase in “mass” (bytes) due to these
added “connection nodes.” (The number of nonconnection nodes should remain
invariant, since structural repertoire size increase in behavioral networks follows
the invariant-length approach.) Thus, the overall mass in bytes of a web site
should increase more quickly than the number of web pages (or structures), and,
in particular, it should scale just fast enough to accommodate the added “con-
nection nodes”. The inset shows how the overall web site mass (no. of bytes)
scales with number of web pages, and one can see that the scaling exponent is
1.20, near the earlier exponent, 1.23.
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total “mass,” in bytes, of a web site scales disproportionately
quickly compared to the number of web pages [see inset of
Figure 12(c)], namely with an exponent of 1.21, due to the
increasing number of connections. It is because of this neo-
cortical density decrease that neocortex surface area increases
as the 8/9 power of gray matter volume [8–14], rather than the
2/3 power, which is why the neocortex becomes increasingly
convoluted in larger brains. It is also what explains the slow
increase in neocortex thickness and the linear dimensions of
neocortical modules [see Figure 5(a)]. The increasing number
of synapses per neuron also has the effect of increasing the
physical diameters of axons and somas as the 1/9 power of
gray matter volume [15, 17, 104], which can be explained [16]
by neural vessel diameters conforming to Murray’s Law [105–
107], where the cube of a parent segment diameter is equal to
the sum of the cubes of the daughter segment diameters [66,
108]. Finally, this physical increase in axon caliber, in turn, is
critical in understanding why neocortical white matter scales
disproportionately quickly as a function of gray matter vol-
ume, and namely, with exponent approximately 4/3 [13, 14,
109, 110]: if axon caliber somehow remained invariant, white
matter volume would scale proportionally with gray matter
volume [15, 16, 111]. We see, then, that connectivity increase
drives many of the broad macro- and micro-features of neo-
cortical anatomy, and that this connectivity increase is due,
ultimately, to a pressure for invariant-length behaviors.

4. COMPARTMENTALIZATION
One feature found in behavioral networks, but not found

in our latest cartoon illustration of networks (Figure 10), is
that networks are often partitioned into multiple areas (or

regions, or partitions) where intra-partition connections are
made locally, and inter-partition connections made via
long-range connections (Figure 13). Table 4 lists example
cases of partitions (or parcellations) and partition-partition
connections in several kinds of network. For example, par-
titions are commonly used in very-large-scale integrated
(VLSI) design to aid in the reduction of wire (e.g., [84]): a
circuit is partitioned into multiple subsets, each subset is
placed in geographically separated regions, and any con-
nections between the subsets become, in effect, long-range
inter-partition connections. The neocortex also is parti-
tioned into many areas, where neurons in the same area
connect via local connections, and neurons in different
areas connect via long-range, white matter axons. And peo-
ple have proposed that perhaps neocortical areas, like in
VLSI design, are driven by save-wire pressures [15, 16, 55–
57, 59 – 62, 67, 72, 111–118]. Businesses also often appear to
have multiple departments, or divisions.

Our question here is, How does parcellation vary as a
function of size in behavioral selected networks? Figure 14

FIGURE 13

Behavioral networks often have distinct regions, or partitions, where intra-partition connections are made locally (and are thus less costly), and inter-partition
connections are long-range (and costly). Left: A network, with its edges and differentiated nodes are shown. Also, the nodes are arranged here in columns,
each column corresponding to a structure, as discussed in Figure 10. Right: The same network, but parcelled into two regions. Notice that the edges are
shorter within the partitions, but longer between the partitions.

TABLE 4

Some Example Kinds of Parcellation in Behavioral Networks

Parcellation Parcellation Connection

Neocortex Area White matter axons
Electronic devices Partition Long-range wires
Computer software Module, or procedure Procedure calls
University Department Contacts
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shows three central possibilities. The first is the no-parcel-
lation approach, where the number of partitions is invari-
ant; or, intuitively, there are, as far as scaling issues are
concerned, no partitions at all. The opposite extreme is the
invariant-sized-parcellation approach, where the average
size of a partition remains invariant. Although this scaling
possibility may at first seem to be the opposite of the no-
parcellation approach, they are actually identical in terms of
scaling, since the partitions may now be treated as nodes.

And, lastly, there is the in-between-parcellation approach,
where the number of partitions increases with network size,
but disproportionately slowly (and as a power law).

How does parcellation, in fact, scale in behavioral net-
works? Figure 15 shows parcellation data from three kinds
of network: neocortex (areas), computer software (mod-
ules), and universities (departments). In each case, parcel-
lation increases, but disproportionately slowly as a function
of network size. The in-between-parcellation approach
therefore applies in these cases. In particular, a power law
applies in each case, and the exponent is near 1/2.

FIGURE 14

The possible manners in which parcellation may scale with network
size. The small network at the top has a size of four, and the networks
below have been scaled up to a size of 64, or 16 times larger. Under
the no-parcellation approach, there are no parcellations at any scale
(left); or, more weakly, there are an invariant number of partitions. At
the opposite extreme (right), the invariant-sized-parcellation approach
leads to the number of partitions scaling proportionally with network
size. In terms of scaling, partitions under this approach act as nodes
themselves, and there is, in effect, just one large area; therefore, as
far as scaling issues are concerned, these two seemingly opposite
approaches are equivalent. Conceptually distinct from these, however,
is the in-between-parcellation approach (middle), where the number
of partitions scales up, but disproportionately slowly compared to
network size.

FIGURE 15

FIGURE 15 How parcellation varies as a function of network size in three
kinds of network: neocortex, computer software, and universities. In each
case parcellation scales up disproportionately slowly with network size, and
namely nearly as a square-root law. (a) Log-log (base 10) plot of number of
areas versus number of neurons in neocortex, for 19 mammals [72]. Parcel-
lation scales as predicted by economical well-connectedness (see Figure 17).
The area counts are computed via measuring the average sizes of areas, as
a percentage of neocortex, and extrapolating the expected total number of
areas. The x-axis here scales proportionally with number of neurons (and was
computed as the 2/3 power of brain volume). Measurements are taken from
sensory-motor areas from the Kaas-Krubitzer literature [142–151]. (b) Log-log
plot of number of program modules versus program size for microprogram-
ming data from Ref. 48. (c) Log-log plot of number of departments versus total
number of faculty (measured as the number of students). Data are from Refs.
85 and 1. Number of departments was used in those articles as a measure of
network differentiation, but we now believe departments are more analogous
to partitions. A square-root law also appears to govern the growth in the
number of departments as a function of university size for a single university
(Duke) through time (not shown here, see Ref. 1).
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A related question about parcellation is how partition-de-
gree (the number of partitions with which a partition con-
nects) scales with network size. We saw in the previous section
that structure-degree increases with network size, but dispro-
portionately slowly since full structure-structure connectivity
would be prohibitive. Since the number of partitions increases
disproportionately slowly as a function of network size, full
partition-partition connectivity may be affordable. Analogous
to the three possible manners for scaling structure connectiv-
ity (see Figure 11 again), there are three possible manners for
scaling partition connectivity.

Figure 16 shows data on partition-partition connectivity
for two kinds of network: neocortex and computer software.
Figure 16(a) shows how the number of partition-partition
connections scales as a function of the number of parti-
tions, and for each kind of network the exponent is approx-
imately 2. Recall that the analogous plot for structures (Fig-
ure 12) showed that the number of structure-structure
connections scales as the number of structures to the power
of much lower exponents (e.g., 1.5), which meant that struc-
ture-structure connectivity increased disproportionately
slowly with network size. The scaling exponent of 2 for

FIGURE 16

Data showing that area-area connectivity scales as if fully connected for neocortex and computer software. (a) Log-log (base 10) plots of the total number
of area-area connections versus the total number of areas, for neocortex and computer software. Data for neocortex are from 10 sensory (and somato-motor)
subnetworks [148, 152–156]. See Ref. 72. Economical well-connectedness (Figure 17) predicts a slope of 2, and one can see the slope is 2 here. Data
for computer software are for programs written in microprogramming languages, and are from [48], where we use the number of procedure calls as a
proportional proxy for module-module interconnectivity. (b) Log-log plots of the average area-degree versus the total network size (i.e., number of nodes,
not number of areas). Data for neocortex are from sensory (and somato-motor) areas, and are compiled in Ref. 72. We expect (see Figure 17), and find,
a slope of 1/2. Since the number of areas also scales as the 1/2 power of network size, area-degrees scale up as fast as possible. A similar phenomenon
is found among the same set of computer programs as mentioned in (a).
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partition connectivity, however, means that partition con-
nectivity scales up as quickly as possible: up to a constant
factor, partition networks are fully connected, independent
of network size. Figure 16(b) demonstrates this conclusion
in a different fashion, showing data on how partition-degree
increases with network size. In neocortex and the computer
software data set, partition-degree increases as the square
root of network size. Since parcellation also increases as the
square root of network size (see Figure 15), partition-degree
scales proportionally with the number of partitions, which
is just to again conclude that, up to a constant factor,
partition-networks maintain full-connectivity no matter the
network size.

One way to describe these parcellation results is as follows:
Behavioral networks appear to increase the number of parti-
tions as fast as possible, subject to the constraint that areas are,
up to a constant factor, fully connected. In order to conform to
this—i.e., in order for a partition to connect to all the other
partitions—each partition must have enough nodes within it
to make the connections. Thus, the size of a partition cannot
scale up less quickly than the number of partitions, lest full
partition-connectivity be impossible to maintain. The fastest
that the number of partitions may be increased, then, is pro-
portionally with partition size, and since network size is the
product of the number of partitions and partition size, parcel-
lation scales as the square root of network size. Partitions
conforming to this have been called square-root compartments

[116, 119]. In this light, we record our empirical parcellation
results as the following observation.

Observation 4: Slow Parcellation Increase, and Full-
Connectivity Parcellation: Larger behavioral selected
networks are parcelled into more and more areas, with
number of areas scaling as fast as possible subject to the
constraint that areas are, up to a constant proportion,
fully connected to one another; this leads to parcellation
scaling as the square root of network size.

Why, though, might behavioral networks conform to this?
That is, why does parcellation appear to scale up as quickly as
possible subject to the constraint of full partition-partition con-
nectivity (up to a constant factor)? We currently have no general
answer to this question. We do, however, possess a theory spe-
cific to the neocortex where we can answer the question [15, 16,
72, 111]. The constraint that partition-networks scale up connec-
tivity as quickly as possible we label invariant area-interconnect-
edness (Figure 17). Square-root compartments assume this. The
second constraint is that when a partition connects to another
partition, the neuron making the link synapses to an invariant
fraction of the neurons in the partition. We call this invariant
area-infiltration (Figure 17). If these two invariances are satisfied
economically, i.e., using the least amount of wire, then one may
derive square-root compartments (see [15, 16, 72, 111]). Areas
scale up as quickly as possible (subject to the constraint of invari-

FIGURE 17

Illustrations of the two invariance assumptions of well-connectedness. Invariant area-infiltration: In each pair of areas, a small pair (left) and large pair (right),
one area infiltrates half of the neurons in the other area. Invariant area-interconnectedness: Two brains are shown, one with four cortical areas (left) and
another with eight. They each have the same area-interconnectedness since each area in each brain is connected with 1/4 of the total number of areas.
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ant area-interconnectedness) because, that way, the size of areas
scales up as slowly as possible, and this, in turn, allows the
number of synapses per neuron, and the wiring volume support-
ing it, to scale up as slowly as possible [15, 16, 72, 111]. Other
networks (computer software and businesses) may also follow a
square root law [Figure 15(b and c)], but the explanation we just
gave does not apply more generally to these other networks, since
they are unlikely to satisfy invariant area-infiltration. Also, invari-
ant area-infiltration is a necessary assumption in deriving that
neuron-degree scales as the square root of network size [15, 16,
72, 111], something we found to be the case in Figure 12(a). Since
other behavioral networks cannot be expected to satisfy invariant
area-infiltration, structure-degree in other networks is not neces-
sarily expected to scale as a square root law.

Parcellation, then, increases in larger behavioral selected
networks and does so disproportionately slowly. Parcella-
tion is generally thought to be driven, in part, by wire-
optimization reasons, and we put forth one argument
above, relevant for the neocortex specifically, that predicts
parcellation to scale up as it does. We do not yet have a
more general argument for why parcellation may increase
in the manner it does for other networks, but it seems
reasonable to suspect that wire-optimization reasons will be
fundamental to any such explanation. If, indeed, wire-opti-

mization generally underlies the scaling of parcellation,
then we may attribute the ultimate cause for parcellation as
follows: (a) parcellation increases for wire-optimization rea-
sons, (b) pressure for wire-optimization is a central issue
only because structure-degree increases in larger networks,
(c) this, in turn, occurs in order to maintain an invariant
network diameter, and (d) network diameter is kept invari-
ant in order to keep behavioral running-times low. In this
way we see how parcellation is something to expect in
behavioral selected networks, but not necessarily in nonbe-
havioral or nonselected networks.

5. CONCLUSION
Our purpose here was to examine commonalities be-

tween behavioral selected networks of all kinds, and for
neocortex and computer software more specifically. We
have made four “observations” throughout the article,
which we rewrite here in one place.

Observation 1: Invariant-Length Structures and
Power-Law Differentiation: Behavioral selected net-
works increase their structural repertoire size by in-
creasing the number of node types, not by increasing
the length of structures.

FIGURE 18

Summary of the correlates of behavioral networks, emphasizing the unifying power of the framework.
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Observation 2: Invariant-Length Behaviors: Be-
havioral selected networks increase their behavioral
repertoire size largely by increasing the number of
lower-level behaviors, not primarily by increasing the
length of behaviors. This appears to hold for even the
lowest-level behaviors, or structures.

Observation 3: Invariant Network Diameter � 1: In
behavioral selected networks, structure-degree (the
number of edges per structure) increases as a power law
with network size, but disproportionately slowly; and
because behavioral networks are small-world, the net-
work diameter is an invariant and greater than 1.

Observation 4: Slow Parcellation Increase, and
Full-Connectivity Parcellation: Larger behavioral se-
lected networks are parcelled into more and more
areas, with number of areas scaling as fast as possible
subject to the constraint that areas are, up to a con-
stant proportion, fully connected to one another; this
leads to parcellation scaling approximately as the
square root of network size.

Concerning Observation 1, in our data the nodes are them-
selves complex, emergent, objects built from even lower-level
objects, and, as discussed at the end of Section 1, it is an open

question as to whether the observation applies to the lowest
levels, such as DNA or fundamental microelectronic circuits.
Figure 18 summarizes the main “correlates” of behavioral net-
works we have discussed, covering the four observations, and
the wide variety of networks treated here. This figure empha-
sizes the unifying power of the framework.

Figure 19 summarizes many of the implications we have
made throughout the article, showing how they all link
together, and saying where in this article the implication
was discussed. One can see from Figure 19 that all the
correlates of behavioral networks we discussed appear to be
consequences of a selected, behavioral network accommo-
dating greater behavioral repertoire size. In particular, when
a selected behavioral network increases its number of be-
haviors [Figure 19(a)], the lengths of the behaviors do not
appear to increase [Figure 19(b)]. This may be due to selec-
tive pressure to keep the run-times of behaviors below some
limit. Instead, the number of lower-level behavior types is
increased [Figure 19(c)]. This also appears to hold for the
lowest-level behavior types, the structure types [19(c)]. The
number of structure types increases “slowly” compared to
the behavioral repertoire size increase, because structures
are used combinatorially to build behaviors. The fact that
the number of structure types increases has at least four

FIGURE 19

Correlates of behavioral networks, as discussed in this article, emphasizing the connections between the correlates. The arrows show the chains of
reasoning, and the numbers on the arrows indicate the section of the article where the implication is discussed. In each case, the most relevant observation
is noted. It is to be read like this: For example, starting at the top, it states that when behavioral repertoire size is increased, it results in two consequences:
behavior lengths that remain invariant, and a slow increase in the number of lower-level, structure, types. This increase in the number of structure types,
in turn, has the four consequences shown below it, and so on. See the discussion in Section 5 for more comment.
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consequences, [19(d)] through [19(g)]. The lengths of struc-

tures do not appear to increase [19(d)], and, instead, the

number of node types, or network differentiation, is in-

creased very slowly [19(e)]. This may be due to selective

pressure to minimize overall network size. This increase is

“very slow” compared to the behavioral repertoire increase

because nodes combine to build structures, which combine

to build behaviors. The increasing structure type repertoire

also leads to a slowly increasing structure-degree (the num-

ber of structures to which a structure connects) [19(f)]. This

is in order to maintain an invariant network diameter

[19(h)], for the purpose of invariant length behaviors.

Greater structure repertoire size also means greater network

size [19(g)], and this has the consequences, for wire-optimi-

zation reasons, that the number of areas slowly increases

[19(i)] and the area-degree (the number of areas to which an

area connects) increases in proportion to the number of

areas [19(j)].

We have seen above that computer software is similar to

the other behavioral selected networks, and to the neocor-

tex in particular, in regards to our principal observations.

But not only is computer software like other behavioral

selected networks, but, more importantly, vice versa. Our

framework and data here suggest that behavioral selected

networks of all kinds are like computer software in the re-

spects summarized in Figures 18 and 19. (See Table 5 for the

full analogy between neocortex and computer software.) We

believe this provides a powerful framework for thinking

about complex behavioral, selected networks, because com-

puter software is, of course, better understood than biolog-

ical networks.
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